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Abstract

In this paper, we describe an extension of the theory of short-
term memory decay for the ACT-R cognitive architecture. By
including a short-term decay for elements recently cleared
from active memory, we have extended the functionality of
spreading activation as a source of implicit contextual
information for the model. In ACT-R models of serial
memory and decision-making, contextual information has
generally been modeled using either explicit markers (e.g.,
positional indices) or fixed-length windows of prior elements
(e.g., a lag-based representation). While markers and fixed-
length windows do capture some patterns of human errors,
they are inflexible, are set by the modeler and not the model,
and are not psychologically-plausible representations of
contextual information. In conjunction with our associative
learning mechanism (Thomson & Lebiere, 2013), we show
how buffer decay can provide more flexible and implicit
contextual information which explains refraction, positional
confusion errors, and repetition facilitation and inhibition.
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Introduction

Over the last 50 years there has been a substantial body of
literature describing how contextual information interacts
with memory encoding and recall. More specifically, when
the context changes between encoding and retrieval time,
recall is relatively reduced compared to when retrieval
occurs in the same context as encoding. Beginning with
Godden and Baddeley’s (1975; 1980) seminal work on
context-dependent recall in natural environments (see also
Smith & Vela, 2001), research has shown both internal-state
(e.g., physiological) and external-cue (e.g., environmental)
dependence on recall (Eich, 1980). For instance, Godden
and Baddeley found that when deep sea divers learned a list
underwater, they experienced reduced list recall when
recalling this list on the surface as compared to recall while
underwater again. Other examples of context-dependence
include mood-dependence (Eich, Macaulay, & Ryan, 1994),
language-dependence (Marian & Neisser, 2000), and
motivation-dependence (Delgado, Stenger, & Fiez, 2004).

While context is a complex real-world phenomenon, it is
much more constrained in a cognitive architecture such as
ACT-R, where the information flow between a model and
the environment is abstracted to a set of symbolic elements
(see Anderson, Bothell, Byrne, et al., 2004). In this sense
context is limited to the information available in the buffer
system and the spread of activation from those items
currently in working memory. Before delving more deeply
into the role of contextual information in ACT-R we will
present a brief overview of ACT-R and describe how
context has previously been modeled in tasks involving
serial memory and decision-making.

An Overview of the ACT-R Architecture

ACT-R is a cognitive architecture defined as a set of
modules which are integrated and coordinated through a
centralized production system (see Figure 1). Modules
access information from buffers, while the production
system only responds to the contents of the buffers and not
the internal processing of the modules themselves. The set
of buffers therefore implicitly constitute the working
memory of the architecture. The declarative memory and
production system modules store and retrieve information
that corresponds to declarative and procedural knowledge,
respectively. Declarative knowledge is the kind of
knowledge that a person can attend to, reflect upon, and
usually articulate in some way, while procedural knowledge
consists of the skills we display in our behavior, generally
without conscious awareness.
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Figure 1. An overview of ACT-R’s modules and their dependent
buffers.

Declarative knowledge in ACT-R is represented formally
in terms of chunks, which corresponds to the episodic and
semantic knowledge that promotes long-term coherence in
behavior. Chunks have an explicit type, and consist of a set
of slot-value pairs of information. Chunks are retrieved from
declarative memory (DM) by an activation process. When a
retrieval request is made the most active matching chunk is
returned, where activation is computed as the sum of base-
level activation, spreading activation, mismatch penalty and
stochastic noise. Base-level activation reflects a chunk’s
recency and frequency of occurrence. Activation spreads
from the current focus of attention through associations
among chunks in declarative memory. These associations
are built up from experience, and reflect how chunks co-
occur in cognitive processing. Chunks are also compared to
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the desired retrieval pattern using a partial matching
mechanism that subtracts from the activation of a chunk its
degree of mismatch, additive for each component of the
pattern and corresponding chunk value. Finally, noise is
added to chunk activations to make retrieval a probabilistic
process governed by a Boltzmann (softmax) distribution.

While the most active chunk is usually retrieved, a
blending process (Lebiere, 1999) can also be applied that
returns a derived output reflecting the similarity between the
values of the contents of all chunks, weighted by their
retrieval probabilities reflecting their activations. This
blending process is used intensively in models of decision-
making since it provides a tractable way to generalize
decisions in continuous domains such as probability space.

The flow of information is controlled in ACT-R by a
production system, which operates on the contents of the
buffers. Each production consists of if-then condition-action
pairs. Conditions are typically criteria for buffer matches,
while the actions are typically changes to the contents of
buffers that might trigger operations in the associated
modules. The production with the highest utility is selected
to fire from among the eligible productions. Please see
Anderson and Lebiere (1998) and Anderson et al. (2004) for
a more complete account of ACT-R mechanisms.

Before proceeding it is important to review the process of
spreading activation in detail, as it is the primary mechanism
for capturing implicit contextual information in ACT-R.

Spreading Activation in ACT-R
The standard mechanism for spreading activation in ACT-R
is derived from the fan effect (Anderson & Reder, 1999).
The fan effect is an interference-based account of memory,
where a chunk j has its spread of activation (S;) diluted
based on the number of contexts in which it has been
experienced:

S = smax — In(fanj;)
Smax is a maximum spread of association from chunk j to i,
and fan;; is the number of times chunk j is a slot value in all
chunks in memory. The S; term is also multiplied by the
weight of buffer k from where it is a source of activation,
divided by the number of chunks in that buffer:

Si = Z z Wk]S]l
ko j

The total spread of activation is summed across all the
chunks in all the buffers.

There are some limitations to the current implementation
of spreading activation. First, the maximum amount of
spread is set by the smax parameter as opposed to being
learned from the environment. In Thomson and Lebiere
(2013), we describe an associative learning mechanism
where the strengths of association are learned from
statistical regularities in the environment. Second, there is
only a limited context window available when using
spreading activation because activation only spreads from
chunks currently in buffers. In ACT-R, once a chunk is
cleared from a buffer (i.e., removed from working memory)
then all the residual activation of the chunk is also removed.

As such, there is no decay of S; from the buffer, and thus
context can only be spread to temporally abutting buffer
contents (e.g., it only spreads proximal contextual
information). These limitations restrict the kinds of
contextual information which ACT-R can use.

Prior Models Applying Context in Serial Recall

In serial memory recall, relevant contextual information
includes elements recently perceived and/or recalled in the
current list, and elements that have been recalled in similar
positions of similar lists. The activation that spreads from
contextual elements to recall candidates is described as
either priming or interference based on whether it facilitates
or inhibits correct recall. Patterns of errors due to contextual
information — e.g., proactive and retroactive interference —
include transposition errors (switching the position of two
elements), omission errors (skipping an element), and
intrusion errors (adding an extra element). In addition, there
are context-specific effects of repetition, namely repetition
facilitation when repeated items are close together, and
repetition inhibition when items are farther apart.

Three related theories of memory include chaining theory
(Ebbinghaus, 1964), positional theory (Conrad, 1965), and
ordinal theory (Estes, 1972). Chaining theory assumes that
order information is expressed by pairwise associations
between items in memory. A limitation of chaining models
is that high item-similarity and repetition cause much higher
than expected confusion errors during recall (Henson, 1996)
Positional theory assumes that successive items are stored in
ordered slots (e.g., bins), and that these slots are implicit
mechanisms which cue retrieval of item information.
Positional theory, however, cannot explain context-driven
human behavior such as positional confusion and repetition
inhibition. Ordinal theory assumes that the position of a list
item is stored as a relative value along a continuous property
based on the history (c.f., prior context) of the items, or in
short, that position is derived from the context of items. An
advantage of ordinal theory is that no explicit positional
information needs to be encoded for successful recall.

In the canonical ACT-R model of list memory (Anderson,
Bothell, Lebiere, & Matessa, 1998), the model used a
variation on chaining and positional theories to capture
contextual information by explicitly encoding absolute
serial position in the chunk representation:

(item-one

ISA item
name w17
parent groupl

position first

This model was most similar to position theory by explicitly
encoding positions as a slot in the chunk. It also, however,
has similarities to chaining theory as the flow of production
firings attempt to recall chunks by incrementing by position,
e.g., by recalling a chunk with position first then recalling a
chunk with position second, and so on. The effect of context
in this model was limited to positional confusion, which was
accomplished by explicitly setting similarities between
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position chunks. Errors of omission and intrusion are due to
the base-level activation of the item chunks (i.e., their
recency and frequency of use).

While successfully fitting overall accuracy and positional
confusion (which was to be expected as it was hand-coded),
explicitly representing context using positional information
was not psychologically-plausible nor did it take advantage
of more implicit mechanisms such as spreading activation.
This explicit representation was necessary, however, because
of the limitations of spreading activation not providing the
necessary implicit structures to plausibly capture the effects
of context on retrievals.

Prior Models Applying Context in Decision-Making

Most models of decision-making in ACT-R use a variant of
instance-based learning theory (IBL; Gonzalez, Lerch, &
Lebiere, 2003). The main claim of IBL is that knowledge is
generated through the creation of instances. These instances
are represented in chunks with slots containing the
conditions (e.g., a set of contextual cues), the decision made
(e.g., an action), and the outcome of the decision (e.g., the
utility of the decision). When including more than a
representation of the current features available to the model,
contextual cues — similar to models of serial memory — are
represented explicitly as either a sequence or history of
previous choices, bringing in a temporal aspect to context as
well. Instances store this history as a fixed window of prior
decisions — usually the two most recent decisions. By
storing these prior decision instances as part of their initial
context, the models can then match against them using the
current context. This generates the most likely expected
outcome. The model then selects the best outcome based on
the dynamics of chunk retrieval and blended retrievals.

Specific  examples using a lag-based context
representation include a model of how batters predict
baseball pitch speed (Lebiere, Gray, Salvucci & West,
2003), a model of sequence learning (Lebiere & Wallach,
2001), and a model of playing Paper Rock Scissors (West &
Lebiere, 2001). While the previous models do not all use
spreading activation to further support contextual effects in
decision-making, it has been applied in an instance-based
model of sequential diagnostic reasoning (Mehlhorn,
Taatgen, Lebiere, & Krems, 2011). In this model, activation
spreads from the set of symptoms to possible diagnoses,
with context-based interference due to fan effects (i.e., the
set of diagnoses to which a given symptom is associated).

There are some issues with using explicit fixed-length
context windows and the current ACT-R implementation of
spreading activation as the basis for generating contextual
information. Fixed-length windows are representationally
rigid and cannot account for the dynamic chunking that
occurs during sequence learning, such as the kind of
hierarchically-organized pattern-matching that occurs in
chess mastery (Chase & Simon, 1973). They have proven
effective in the previously-mentioned examples simply
because they are the right level of abstraction to capture the
limited range of human behaviors on abstract decision-
making tasks such as repeated binary choice.

On the other hand, spreading activation is a more implicit
mechanism that should capture many of context-driven
effects (e.g., priming and interference). The current
implementation of spreading activation, however, has some
limitations that we have previously discussed. In particular,
activations are not learned but are a fixed about set by a
parameter and reduced by the log of the fan, that is, by the
number of elements that contain the source chunk as a slot
value. In addition, spreading activation becomes unstable
with a fairly small amount of symbolic overlap, resulting in
models which have many instances having the spread of
activation become inhibitory. With a default spread (i.e., the
smax parameter) of 2 (Lebiere, 1999), a chunk can appear as
a value in 7 chunks before becoming inhibitory. This may
be reasonable for modeling a single psychology experiment,
but in a complex decision-making task a model using IBL
will have its S;; become inhibitory for most instance chunks.

Prior Attempts to Capture Context Effects

In ACT-R 4, strengths of association (S;) were learned by
the model by experiencing environmental context using a
form of associative learning (Schooler & Anderson, 1993).
Spreading activation denoted the log-likelihood that chunk
N; was relevant given context C;:
(P(Nl-|Cj)> P(N) T7P(GIN;)
Sji =In — = — —
P(NIc)) P L LP(GIN)

Spread was computed as the log-likelihood of the number of
times a chunk was in context (i.e., in the goal buffer) over
times the chunk was retrieved in total. This function was
deprecated due to “catastrophic” instabilities in the
mechanism. When C; is usually not in the context when N; is
needed P(N;|C;) is much smaller than P(N,|C;), thus the S;;
become negative as the log-likelihood approaches 0. This
issue is due to the global context term C; which alters the S;;
whenever a chunk is added and/or production fires, and is
magnified by the asymmetrical log-likelihood calculation
which penalizes the context ratio in long-running models.

To reconcile the difficulties in previous implementations
of associative learning, Thomson and Lebiere (2013) derived
a Hebbian-inspired associative learning rule influenced by
spike-timing dependent plasticity (STDP; Caporale & Dan,
2008) and Rescorla-Wagner (1972) models of classical
conditioning. Unlike traditional Hebbian implementations
which simply increment associations so long as both pre-
synaptic and post-synaptic neurons fire within a temporal
window, in STPD if the pre-synaptic neuron fires before the
post-synaptic then the association is strengthened, while if
the post-synaptic neuron fires before the pre-synaptic then
the association is inhibited. We assume that the set of
chunks in all buffers when a retrieval request is initiated is
loosely analogous to pre-synaptic neuronal firings, and the
set of chunks in the buffers when the retrieval request is
completed is loosely analogous to post-synaptic firings.

Associations are created and updated when the set of
context chunks C (and its slots) are associated to a
successfully requested chunk N (and its slots) according to a
variant of the Rescorla-Wagner learning rule:
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« i o3;
Sgiviec Jilvieny = ((1 - E)Sﬁmr) + ﬁ
1 1
where « is an interference rate that determines how much
the prior S;; is squashed, o is a learning rate equivalent to the
smax parameter, g; is the weight of the buffer containing j
and is equivalent to W, and c; is the number of valid slots
in the requested chunk. The ¢ value is positive for chunks
that were in buffers at the time the request was initiated
(hebbian learning) and negative for chunks that were in
buffers at the time the request was completed (anti-hebbian
learning). Also, associations do not decay over time.

This equation summarizes the set of S; as the sum of
positively associating the chunks in buffers when a request
is initiated with the successfully requested chunk, and
negatively associating chunks in buffers when the request is
completed with the successfully requested chunk. The
successfully requested chunk is included in the request-
completed context, causing the chunk to become negatively
associated with itself, leading to a natural refractory firing
period analogous to base-level inhibition (Lebiere & Best,
2009). This avoids the kind of self-activation feedback loops
that lead to model instability.

To provide an example, assume source j has just made a
positive association with target | and has a prior S;; value of
3, the default a squashing value of .2, learning rate ¢ value
of 1, and buffer weight p; of 1, then the new S; would be:

Si=(1-.2)+3)+1=34
Due to the influence of the interference rate on the prior Sy,
there was a modest .4 increase in the association strength.

This mechanism is bounded, stable, and symmetrical.
Compared to the Anderson et al., (1998) model of serial
memory previously discussed, it was able to predict human
accuracy without any parameter adjustment, r* = 977, and
also without the need for any explicit contextual information
to be encoded in the chunk structure:

(item-one
ISA item
name w1

While this mechanism captured human accuracy, the
associations that were formed were essentially still a fixed
lag-1 window (albeit being learned automatically and
implicit) since there was no residual spreading activation of
a chunk once it was cleared from a buffer. Thus, the model
was only able to capture very proximal associations (+ 1
position). As such, it did not capture the more distal
positional confusion or repetition facilitation and inhibition.
What was needed was a way to flexibly (and implicitly)
expand the context window, or in other words, what was
needed was a mechanism to handle buffer decay.

A Buffer Decay Mechanism for ACT-R

The buffer decay module adds a short-term decay to the
activation of chunks recently cleared from buffers. At the
present, chunks still in buffers do not decay, as they are still
in active memory. This short-term decay is used by the
associative learning module and spreading activation to
learn and spread associations whose strength is mediated

according to the remaining short-term activation. When a
chunk’s short-term activation falls below a given threshold
then the residual activation of the chunk is considered to
have fully decayed from memory. A final point is that each
time a chunk is cleared from memory it is given a separate
decaying short-term activation. Thus, repetition is treated as
two separate traces, each with an individual decay activation.
In this paper we present two possibilities for decay
functions, both of which are based on the existing base-level
decay equations standard in ACT-R. This is only a first-pass
using existing (and well-justified) activation equations, and
may not reflect the best decay profile after further
justification against human performance. The first function
we present is a fixed decay rate, and works similar to the
optimized base-level learning equation. The second is a
dynamically-generated decay rate, and sets decay based on
the length of time that the chunk remained in the buffer
before being cleared. This dynamically-generated decay rate
simulates the effect of encoding and elaboration theorized to
take place while the chunk remains in the buffer over time.

Fixed-Strength Decay
As previously mentioned, short-term decay is derived from
the optimized base-level learning equation B;:

B;=In(n/(1—-d))—d+In(1+1)
where n is the number of presentations of chunk i, L is the
time since the creation of chunk i, and d is the decay-rate
obtained from the :bll parameter. Since the number of
presentations n of chunk i will always be 1, we can simplify
the short-term decay equation D; to:

D;=1—-d(n(1+1L))

where d is the decay rate, and L is the time since the chunk
has been cleared from the buffer.

Classic memory literature has argued that the effective
duration of short-term memory without the ability to
rehearse is between 8-18 seconds (Peterson & Peterson,
1959; Waugh & Norman, 1965). As seen in Figure 2, this
corresponds to a d between .3 and .5 (which is the default
range of acceptable values in ACT-R). With a d of .3 it
takes 27 seconds for the chunk to fully decay (however its
influence is negligible after 18-20 seconds), with a d of .4 it
takes 11 seconds for the chunk to decay, and with a d of .5 it
takes 6 seconds for the chunk to decay.
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Figure 2. Activations based on different base-level decay rates.
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Dynamically-Generated Decay Strength

The process of encoding, consolidation, and elaboration of
information is not an all-or-nothing process, yet it is
abstracted to such in ACT-R where a chunk and its contents
are either available in a buffer or they are not. Some
researchers (e.g., Nyamsuren, 2012) have attempted to
model perceptual encoding, where slots from chunks in the
visual buffer become available probabilistically based on
attentional constraints. We instead approach the processes
of consolation and elaboration by basing the short-term
decay rate based on the length of time a chunk was present
in a buffer. While the core of the decay function remains the
same as the fixed-rate decay, dynamically-generated decay
strength uses an exponential function to replace the d short-
term decay parameter in the decay function:

(e‘t + 0()

de|——

1+ «a

which is substituted into the short-term decay equation:

D=1 (%), (1+1)
L 14+ «a n

where t is the time the chunk was in the buffer, L is the time
since the chunk has been cleared, and « is a parameter to
control the asymptotic decay rate (i.e., the slowest possible
decay rate). Table 1 shows the decay rate based on the time
a chunk remains in a buffer for three values of a.

Table 1. d values based on time in buffer.

time(s) d,e=.3 d,a=.4 d,a=.5
0.05 0.962 0.965 0.967
0.10 0.927 0.932 0.937
0.20 0.861 0.871 0.879
0.50 0.697 0.719 0.738
1.0 0.514 0.548 0.579
15 0.402 0.445 0.482
2.0 0.335 0.382 0.424
2.5 0.294 0.344 0.388
3.0 0.269 0.321 0.367
35 0.254 0.307 0.353
4.0 0.245 0.299 0.346
5.0 0.236 0.291 0.338

When a chunk remains in a buffer for only 50 ms (i.e., the
length of a single production) then it has a base-level decay
rate greater than .9, which approximates the complete decay
of its residual spreading activation in 2 seconds. This is
coincidentally the time-course of visuospatial and auditory
short-term memory. However, once a chunk has been in a
buffer for longer than 2 to 3 seconds then it is near its
asymptotic decay rate, which reflects the chunk being fully-
consolidated into memory. Thus, the residual spreading
activation from the chunk’s strength of association will
remain maximally influential on later requests.

A consequence of adopting this dynamically-generated
decay rate is that rehearsal strategy and the time-course of
production firings become much more important. For
instance, it is possible to quickly retrieve chunks and clear
them from a buffer, which results in chunks with potentially
higher base-level activations, but with more rapid short-term
term decay, resulting in a sparser context from which to

learn (i.e., having a smaller context window). This strategy
is analogous to the effect of cramming while studying as it
reflects rapidly encoding data without making elaborating
links to the surrounding context. Crammers will also have
high proximal proactive interference from items recently
cleared. Another phenotype are elaborators who let chunks
remain in buffers for a longer time (up to several seconds),
which would result in potentially lower base-level activation
but a richer context (i.e., a broader context window) from
which to learn associations and spread activation from.

Associative Learning from Buffer Decay

Learning associations from decaying chunks uses the same
formula described previously with an extra decay term:

aD; op;D;

_ ] prior 17]

S(ilviec HilvieNy = ((1 - ?i)sji ) + Tor

where D; is the remaining short-term activation from source

j when the chunk is currently decaying. If the chunk is still
in a buffer then D; is automatically set to a value of 1.

Applications of Buffer Decay

When buffer decay is used in conjunction with associative
learning, several emergent contextual effects become
apparent. Imagine beginning to recall the sequence A-B-C
one letter at a time. Over time, what influence would the
prior context (chunks A, B, and C) exhibit on subsequent
attempts to recall chunk C again? Figure 3 shows the effect
of having multiple decaying chunks (A, B, and C) in the
context (the dotted lines) and their summed activation (the
solid line) over time. Based on the fixed-decay function, the
solid line shows a net inhibitory effect for several hundred
milliseconds followed by a period of priming, and finally a
period of inhibition decaying to a neutral state of activation
once all the contextual elements have decayed. These states,
respectively, correspond to the time-course of refraction,
repetition facilitation (priming), and repetition inhibition.
\\ : = = ChunkC
\\r-ﬁ — =Chunk B

N Chunk A

~ ——Sum of Activations

Time (s)

Figure 3. Activations based on recent context using associative
learning and buffer decay. The interval between presented each
chunk was 1.75 seconds, and the d was set to .35. The association
strength from B to C was set to 1, the association strength from A
to C was set to .5, and C auto-associated -1 to itself.

While the net effect of this contextual spread is only
marginal, it represents a change in accuracy of several
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percent and is in the rough order of magnitude found in the
literature (Henson, 1996). This effect also represents only an
initial implementation of the buffer decay equation, and
represents an emergent behavior based on the implicit
strengths of association and the temporal dynamics (e.g.,
presentations rate) of the task environment.

Of greater interest, this profile of inhibition followed by
priming followed by inhibition is not set in stone. Changes
in either the strengths of association (from prior experience)
or the task environment (e.qg., faster presentation rates) could
result in a longer net priming period or a long net inhibitory
period. The story becomes even more interesting when
considering the dynamically-generated decay rate.
Dynamically-generated decay provides a mechanism for
additional individual differences by determining short-term
decay rates based on the how long the model consolidates
each chunk (i.e., how long it remained in a buffer).

Conclusion

In this paper we have presented an initial mechanism for
buffer decay in ACT-R which, in conjunction with our
associative learning mechanism, provides a unified
mechanism for flexible, implicit, and behaviorally-plausible
context-based learning. This mechanism explains such
context-based memory effects such as refraction, positional
confusion errors, and repetition facilitation and inhibition.
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